Monodromy of Compositions of Toroidal Bely̌̆ Maps

Edmond Anderson, Aurora Hiveley, Cyna Nguyen; and Daniel/Tedeschicr] directed by Dr. Rachel Davis Pomona Research in Mathematics Experience

December 19, 2022

Table of Contents (Summary)

1 Background

2 Our Project

3 Tools

4 Results

5 Acknowledgements

Background

Elliptic Curves

Elliptic Curve

An elliptic curve $E(\mathbb{C})$ is the set of all points (x, y) satisfying a nonsingular equation of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

for coefficients $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbb{C}$.

Elliptic Curves

Elliptic Curve

An elliptic curve $E(\mathbb{C})$ is the set of all points (x, y) satisfying a nonsingular equation of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

for coefficients $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbb{C}$.

Note

Every elliptic curve $E(\mathbb{C})$ is a torus $T^{2}(\mathbb{R})$.

Toroidal Belyǐ Maps

Belyĭ Map

A Belyī map $\gamma: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a mapping of a Riemann surface to a Riemann sphere with three branch points $\{0,1, \infty\}$.

Toroidal Belyǐ Maps

Belyĭ Map

A Belyī map $\gamma: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a mapping of a Riemann surface to a Riemann sphere with three branch points $\{0,1, \infty\}$.

Bely̌̆ Pair

A Belyī pair (X, γ) is composed of the Riemann surface and its corresponding Belyı̆ map.

Toroidal Belyĭ Maps

Belyĭ Map

A Belyī map $\gamma: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a mapping of a Riemann surface to a Riemann sphere with three branch points $\{0,1, \infty\}$.

Bely̆̌ Pair

A Belyĭ pair (X, γ) is composed of the Riemann surface and its corresponding Belyı̆ map.

Toroidal Belyǐ Map

A Toroidal Belyī map is a mapping $\gamma: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ from an elliptic curve E to a Riemann sphere. A Toroidal Belyī pair is (E, γ).

Toroidal Belyĭ Maps

Dessin d'Enfants

Dessin d'Enfants

Given a Bely̆ pair (X, γ) we define the sets $B=\gamma^{-1}(\{0\})$ and $W=\gamma^{-1}(\{1\})$. We refer to B as the set of black vertices and W as the set of white vertices. The Dessin d'Enfant is the bipartite graph embedded in X with vertices B, W and edges $\gamma^{-1}([0,1])$.

Dessin d'Enfants

Dessin d'Enfants

Given a Bely̆ pair (X, γ) we define the sets $B=\gamma^{-1}(\{0\})$ and $W=\gamma^{-1}(\{1\})$. We refer to B as the set of black vertices and W as the set of white vertices. The Dessin d'Enfant is the bipartite graph embedded in X with vertices B, W and edges $\gamma^{-1}([0,1])$.

Note

The degree of a Belyı̆ map γ is equal to the number of edges in its dessin d'enfant.

Dessin d'Enfants

Δ is the dessin corresponding to the permutation pair

$$
[(1,2,3,4)(5,6,7)(8,9),(1,8,4,7)(2,3,10)(5,6)]
$$

Ω is the dessin corresponding to the permutation pair

$$
[(1,2,3,4)(5,6,7)(8,9),(1,3,8,9)(2,10)(4,5,6)]
$$

Degree Sequence

Degree Sequence

Denote the preimages $B=\gamma^{-1}(0), W=\gamma^{-1}(1)$, and $F=\gamma^{-1}(\infty)$ as marked points on the compact connected Riemann surface X. We will define the Degree Sequence of γ as the multiset of multisets

$$
\mathcal{D}=\left\{\left\{e_{P} \mid P \in B\right\},\left\{e_{P} \mid P \in W\right\},\left\{e_{P} \mid P \in F\right\}\right\} .
$$

Define $N=\operatorname{deg}(\gamma)$ as the degree of the Belyı̆ map.

Degree Sequence

Degree Sequence

Denote the preimages $B=\gamma^{-1}(0), W=\gamma^{-1}(1)$, and $F=\gamma^{-1}(\infty)$ as marked points on the compact connected Riemann surface X. We will define the Degree Sequence of γ as the multiset of multisets

$$
\mathcal{D}=\left\{\left\{e_{P} \mid P \in B\right\},\left\{e_{P} \mid P \in W\right\},\left\{e_{P} \mid P \in F\right\}\right\} .
$$

Define $N=\operatorname{deg}(\gamma)$ as the degree of the Belyı̆ map.

Example

The degree sequence

$$
\mathcal{D}=\{\{4,3,2,1\},\{4,3,2,1\},\{10\}\}
$$

Monodromy Groups

Monodromy Group

A group of the form $G=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle$ that satisfies these properties is said to be a monodromy group.

- Each of the permutations in \mathcal{D} is a product of disjoint cycles with corresponding cycle types.
- G is a transitive subgroup of S_{N}
- $\sigma_{0} \circ \sigma_{1} \circ \sigma_{\infty}=1$

Wreath Product

Semidirect Product

Given any two groups N, H and a group homomorphism $\varphi: H \rightarrow \operatorname{Aut}(N)$ we can construct the semidirect product $N \rtimes H$ as follows:

- The underlying set is the product $N \times H$.
- The binary operation \star is defined as

$$
\left(n_{1}, h_{1}\right) \star\left(n_{2}, h_{2}\right)=\left(n_{1} \varphi\left(h_{1}\right)\left(n_{2}\right), h_{1} h_{2}\right)
$$

Wreath Product

Semidirect Product

Given any two groups N, H and a group homomorphism $\varphi: H \rightarrow \operatorname{Aut}(N)$ we can construct the semidirect product $N \rtimes H$ as follows:

- The underlying set is the product $N \times H$.
- The binary operation \star is defined as

$$
\left(n_{1}, h_{1}\right) \star\left(n_{2}, h_{2}\right)=\left(n_{1} \varphi\left(h_{1}\right)\left(n_{2}\right), h_{1} h_{2}\right)
$$

Wreath Product

Let G be a group and $H \leq S_{n}$ for some non-negative integer n. Then we can form the wreath product as

$$
G \imath H=G^{n} \rtimes H
$$

where H acts on G^{n} by permuting the n copies of G.

Our Project

Goal

The monodromy group $\operatorname{Mon}(\beta)$ contains information about the symmetries of a Belyĭ map β. For any Toroidal Belyı̆ map γ,

- There is a surjective group homomorphism $\operatorname{Mon}(\beta \circ \gamma) \rightarrow \operatorname{Mon}(\beta)$.
- The monodromy group $\operatorname{Mon}(\beta \circ \gamma)$ is contained in the wreath product $\operatorname{Mon}(\gamma)$ 乙 Mon (β).

The monodromy group Mon (β) contains information about the symmetries of a Belyĭ map β. For any Toroidal Belyı̆ map γ,

- There is a surjective group homomorphism $\operatorname{Mon}(\beta \circ \gamma) \rightarrow \operatorname{Mon}(\beta)$.
- The monodromy group $\operatorname{Mon}(\beta \circ \gamma)$ is contained in the wreath product $\operatorname{Mon}(\gamma)$ 乙 $\operatorname{Mon}(\beta)$.

Goal:

In this project, we study how the three $\operatorname{groups} \operatorname{Mon}(\beta)$ and $\operatorname{Mon}(\beta \circ \gamma)$ and Mon (γ) ? Mon (β) compare as we vary over Dynamical Bely̆̌ maps β and now Toroidal Belyī maps γ.

Toroidal Bely̌̌ Map

We will be working with the composition $\beta \circ \gamma: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$, which is a Toroidal Bely̆ Map.

Motivating Question

When is $\operatorname{Mon}(\beta \circ \gamma)$ equal to $\operatorname{Mon}(\gamma)$ $\operatorname{Mon}(\beta)$?

Tools

Jacob Bond's Theorems

Corollary (pg. 71)
The monodromy group Mon $(\beta \gamma)$ of the composition of a dynamical Bely̌̌ map β and a Belyı̆ map γ is isomorphic to a subgroup of the wreath product $\operatorname{Mon}(\gamma) \imath_{E_{\beta}} \operatorname{Mon}(\beta)$. Moreover, this isomorphism is given by

$$
\begin{aligned}
\operatorname{Mon}(\beta \gamma) & \rightarrow \varphi_{\gamma}\left(\pi_{1}^{Z}\right) \leq \operatorname{Mon}(\gamma) \imath_{E_{\beta}} \operatorname{Mon}(\beta) \\
\rho_{\beta \gamma}(\lambda) & \mapsto\left(\rho_{\gamma \star}\left(f_{\lambda}\right), \rho_{\beta}(\lambda)\right) .
\end{aligned}
$$

Jacob Bond's Theorems

Corollary (pg. 71)
The monodromy group Mon $(\beta \gamma)$ of the composition of a dynamical Bely̆ map β and a Belyı̆ map γ is isomorphic to a subgroup of the wreath product $\operatorname{Mon}(\gamma) \imath_{E_{\beta}} \operatorname{Mon}(\beta)$. Moreover, this isomorphism is given by

$$
\begin{aligned}
\operatorname{Mon}(\beta \gamma) & \rightarrow \varphi_{\gamma}\left(\pi_{1}^{Z}\right) \leq \operatorname{Mon}(\gamma) \imath_{E_{\beta}} \operatorname{Mon}(\beta) \\
\rho_{\beta \gamma}(\lambda) & \mapsto\left(\rho_{\gamma \star}\left(f_{\lambda}\right), \rho_{\beta}(\lambda)\right)
\end{aligned}
$$

Note

- The wreath product is denoted $\imath_{E_{\beta}}$ because $\operatorname{Mon}(\beta)$ acts on the set of edges E_{β} of the dessin for β.
- $\rho_{\beta}(\lambda)$ denotes the monodromy representation of λ under β.

Jacob Bond's Theorems

Theorem 4.18 (pg. 76)

Let β be a dynamical Belyĭ map with constellation $\left(\tau_{0}, \tau_{1}\right)$, and extending pattern $\left(f_{0}, f_{1}\right)$. Let

$$
\varphi: \begin{array}{ll}
g_{0} & \mapsto\left(f_{0}, \tau_{0}\right) \\
g_{1} & \mapsto\left(f_{1}, \tau_{1}\right)
\end{array}
$$

and $A:=\varphi\left(\operatorname{Ker} \rho_{\beta}\right)$. Then for any Bely̌̌ map γ,
$\operatorname{Mon}(\beta \gamma) \cong \rho_{\gamma \star}(A) \rtimes \operatorname{Mon}(\beta)$

Jacob Bond's Theorems

Theorem 4.18 (pg. 76)

Let β be a dynamical Belyĭ map with constellation $\left(\tau_{0}, \tau_{1}\right)$, and extending pattern $\left(f_{0}, f_{1}\right)$. Let

$$
\varphi: \begin{array}{ll}
g_{0} & \mapsto\left(f_{0}, \tau_{0}\right) \\
g_{1} & \mapsto\left(f_{1}, \tau_{1}\right)
\end{array}
$$

and $A:=\varphi\left(\operatorname{Ker} \rho_{\beta}\right)$. Then for any Belyı̆ map γ,

$$
\operatorname{Mon}(\beta \gamma) \cong \rho_{\gamma \star}(A) \rtimes \operatorname{Mon}(\beta)
$$

Note

We can view $\operatorname{Ker} \rho_{\beta} \leq F_{2}$. If $F_{2}=\left\langle g_{0}, g_{1}\right\rangle$ then we can construct the above homomorphism φ by defining $\varphi\left(g_{0}\right)$ and $\varphi\left(g_{1}\right)$.

Jacob Bond's Theorems

Rules for the extending pattern

1. If $p \subseteq \mathcal{R}_{1 / 2}$, then $p^{\circlearrowleft} \simeq_{p} 1$.
2. If either $p(0), p(1) \in \overline{\mathbb{H}^{+}}$or $p(0), p(1) \in \mathbb{H}^{-}$and either $p \subseteq \mathcal{R}_{-1 / 2}$ or $p \subseteq \mathcal{R}_{3 / 2}$, then $p \simeq{ }_{p} 1$
3. If $p(0) \in \overline{\mathbb{H}^{+}}, p(1) \in \mathbb{H}^{-}$, and $p \subseteq \mathcal{R}_{-1 / 2}$, then $p^{\circlearrowleft} \simeq_{p} a$.
4. If $p(0) \in \mathbb{H}^{-}, p(1) \in \overline{\mathbb{H}^{+}}$, and $p \subseteq \mathcal{R}_{3 / 2}$, then $p^{\circlearrowleft} \simeq_{p} b$.
5. If $p(0) \in \mathbb{H}^{-}, p(1) \in \overline{\mathbb{H}^{+}}$, and $p \subseteq \mathcal{R}_{-1 / 2}$, then $p^{0} \simeq_{p} a^{-1}$.
6. If $p(0) \in \overline{\mathbb{H}^{+}}, p(1) \in \mathbb{H}^{-}$, and $p \subseteq \mathcal{R}_{3 / 2}$, then $p^{\circlearrowleft} \simeq_{p} b^{-1}$.

Note

$$
\begin{aligned}
\mathcal{R}_{-1 / 2} & :=\mathbb{P}^{1}(\mathbb{C}) \backslash[0, \infty] \\
\mathcal{R}_{1 / 2} & :=\mathbb{P}^{1}(\mathbb{C}) \backslash([-\infty, 0] \cup[1, \infty]) \\
\mathcal{R}_{3 / 2} & :=\mathbb{P}^{1}(\mathbb{C}) \backslash[-\infty, 1]
\end{aligned}
$$

Jacob Bond's Theorems

(a) Case 1

(d) Case 4

(b) Case 2

(c) Case 3

(e) Case 5

(f) Case 6

Melanie Wood's Paper

Melanie Wood uses the composition $\beta \circ \gamma: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$, mapping a sphere to a sphere to a sphere.

Wood's Paper Cont.

Example 3.8 pg 733

$\xi(t)=27 t^{2} /\left(4\left(t^{2}-t+1\right)^{3}\right)$.
The extending pattern of ξ is shown in the figure below.

In the notation from Jacob Bond's thesis, for $\gamma=\Delta, \Omega$ and $\beta=\xi$, then we have

$$
\begin{aligned}
\tau_{0} & =(1,6)(2,3)(4,5) \\
\tau_{1} & =(1,2)(3,4)(5,6)
\end{aligned}
$$

Wood's Paper Cont.

Extending Pattern

$$
\begin{array}{ll}
\tau_{0}=(1,6)(2,3)(4,5) & f_{0}=\left[1, b, 1, b^{-1} a^{-1}, 1, a\right] \\
\tau_{1}=(1,2)(3,4)(5,6) & f_{1}=[1,1,1,1,1,1]
\end{array}
$$

Wood's Paper Cont.

$\operatorname{Mon}(\xi)=H=\langle(1,2)(3,4)(5,6),(1,6)(2,3)(4,5)\rangle$. $\operatorname{Mon}(\Delta)=\operatorname{Mon}(\Omega)=A_{10}$.

Let $n=\left|A_{10}\right|=\frac{10!}{2}$.

Wood's Paper Cont.

$$
\begin{aligned}
\operatorname{Mon}(\xi) & =H=\langle(1,2)(3,4)(5,6),(1,6)(2,3)(4,5)\rangle \\
\operatorname{Mon}(\Delta) & =\operatorname{Mon}(\Omega)=A_{10}
\end{aligned}
$$

Let $n=\left|A_{10}\right|=\frac{10!}{2}$.
Then, $A_{10} \imath H$, has order $6 n^{6}$.

$$
|\operatorname{Mon}(\xi \circ \Delta)|=6 n^{2},
$$

so $\operatorname{Mon}(\xi \circ \Delta) \lesseqgtr A_{10}$ $\langle H$, but

$$
|\operatorname{Mon}(\xi \circ \Omega)|=6 n^{6},
$$

so $\operatorname{Mon}(\xi \circ \Omega)=A_{10}$ ८ H.

Bely̆ Lattès Maps by Ayberk Zeytin

Ayberk Zeytin uses the composition $\beta \circ \gamma: E(\mathbb{C}) \rightarrow E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$, mapping a torus to a torus to a sphere.

Belyǐ Lattès Maps by Ayberk Zeytin

Let E be an elliptic curve given by $E: y^{2}=x^{3}+1$. Consider the toroidal Belyĭ map

$$
\phi: E \rightarrow \mathbb{P}^{1}
$$

given by

$$
\phi: P=(x, y) \mapsto z=\frac{1-y}{2} .
$$

Belyǐ Lattès Maps by Ayberk Zeytin

Let E be an elliptic curve given by $E: y^{2}=x^{3}+1$. Consider the toroidal Belyĭ map

$$
\phi: E \rightarrow \mathbb{P}^{1}
$$

given by

$$
\phi: P=(x, y) \mapsto z=\frac{1-y}{2} .
$$

Lattès Maps

For any positive integer N, the multiplication by N map on E, [N] yields a dynamical Belyı̆ map $B_{N}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ given by $B_{N}(\phi(P))=\phi([N])$. Then, B_{N} has degree N^{2} and the B_{N} are called Lattès maps.

Bely̌̌ Lattès Maps by Ayberk Zeytin

n	B_{n}		$\operatorname{Mon}\left(B_{n}\right)$	$\operatorname{Mon}\left(B_{n} \circ \phi\right)$
2	$\frac{(z-1)(z+1)^{3}}{8(z-1 / 2)^{3}}$		A_{4}	A_{4}
3	$\frac{\left(z^{3}+3 z^{2}-6 z+1\right)^{3}}{27 z(z-1)\left(z^{2}-z+1\right)^{3}}$		(Heisenberg of order 27)	He_{3}
4	$\frac{z\left(z^{5}+8 z^{4}-32 z^{3}+28 z^{2}-10 z+4\right)^{3}}{\left(4 z^{5}-10 z^{4}+28 z^{3}-32 z^{2}+8 z+1\right)^{3}}$		$\left(C_{4} \times C_{4}\right) \rtimes C_{3}$	$\left(C_{4} \times C_{4}\right) \rtimes C_{3}$

Bely̌̌ Lattès Maps by Ayberk Zeytin

Case: $\mathrm{n}=2$

$$
\begin{gathered}
\tau_{0}=(1,3,4) \quad \tau_{1}=(2,4,3) \\
f_{0}=\left[1, b, a, a^{-1}\right] \quad f_{1}=\left[a, b^{-1}, 1, b\right]
\end{gathered}
$$

Dessin Explorer from REUF and Professor Goins
(Image from Mathematica code by Elzie, Nishida, and Thomas.)

Bely̌̌ Lattès Maps by Ayberk Zeytin

Case: $\mathrm{n}=3$

(Image from Mathematica code by Elzie, Nishida, and Thomas.)

$$
\begin{aligned}
\tau_{0} & =(1,7,2)(3,9,4)(5,8,6) \\
\tau_{1} & =(1,2,8)(3,4,7)(5,6,9) \\
f_{0} & =\left[a^{-1}, a, 1,1, b, b^{-1}, 1,1,1\right] \\
f_{1} & =\left[b, 1, a^{-1}, 1,1,1, a, b^{-1}, 1\right]
\end{aligned}
$$

Dessin Explorer from REUF and Professor Goins

Bely̌̌ Lattès Maps by Ayberk Zeytin

Case: $\mathrm{n}=3$

Pappus graph: 18 vertices, 27 edges, 9 hexagons

Sagemath

\star A special thanks to Dr. Edray Goins for providing a base code for us to adapt for our own research!

Function of Code
0. Inputs a Belyı̆ pair (f, β) where β is written b in our code.

Sagemath

\star A special thanks to Dr. Edray Goins for providing a base code for us to adapt for our own research!

Function of Code

0. Inputs a Belyı̆ pair (f, β) where β is written b in our code.
1. Solve for a list of N points (x, y) such that $f=0$ and $b=z_{0}=\frac{1}{2}$.

Sagemath

\star A special thanks to Dr. Edray Goins for providing a base code for us to adapt for our own research!

Function of Code

0. Inputs a Belyı̆ pair (f, β) where β is written b in our code.
1. Solve for a list of N points (x, y) such that $f=0$ and $b=z_{0}=\frac{1}{2}$.
2. Solve the first order IVP:

$$
\left[\begin{array}{l}
\frac{d x}{d t} \\
\frac{d y}{d t}
\end{array}\right]=2 \pi \sqrt{-1} \frac{\beta(x, y)-e}{(\partial \beta / \partial x)(\partial f / \partial y)-(\partial \beta / \partial y)(\partial f / \partial x)}\left[\begin{array}{c}
+\frac{\partial f}{\partial y} \\
-\frac{\partial f}{\partial x}
\end{array}\right],\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=P_{a}
$$

We use Euler's method to do this in Sage.

Sagemath

\star A special thanks to Dr. Edray Goins for providing a base code for us to adapt for our own research!

Function of Code

0 . Inputs a Belyǐ pair (f, β) where β is written b in our code.

1. Solve for a list of N points (x, y) such that $f=0$ and $b=z_{0}=\frac{1}{2}$.
2. Solve the first order IVP:

$$
\left[\begin{array}{l}
\frac{d x}{d t} \\
\frac{d y}{d t}
\end{array}\right]=2 \pi \sqrt{-1} \frac{\beta(x, y)-e}{(\partial \beta / \partial x)(\partial f / \partial y)-(\partial \beta / \partial y)(\partial f / \partial x)}\left[\begin{array}{c}
+\frac{\partial f}{\partial y} \\
-\frac{\partial f}{\partial x}
\end{array}\right],\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=P_{a}
$$

We use Euler's method to do this in Sage.
3. Form a list of endpoints by carrying out step 2 for $a=1,2, \ldots, N$ on the interval $0 \leq t \leq 1$ and selecting the endpoint of each path. Do this twice to create 2 lists, one for $e=0$ and one for $e=1$.

Sagemath

4. Compare the list of endpoints computed to the list of N points, and take the point P_{a} from step 1 which is closest to that endpoint. This will help us avoid small rounding errors.

Sagemath

4. Compare the list of endpoints computed to the list of N points, and take the point P_{a} from step 1 which is closest to that endpoint. This will help us avoid small rounding errors.
5. Calculate σ_{0} and σ_{1} by permuting the points in the updated list and returning these permutations as cycles. Find σ_{∞} by computing $\sigma_{1}{ }^{-1} \sigma_{0}{ }^{-1}$. This yields the monodromy triple.

Sagemath

4. Compare the list of endpoints computed to the list of N points, and take the point P_{a} from step 1 which is closest to that endpoint. This will help us avoid small rounding errors.
5. Calculate σ_{0} and σ_{1} by permuting the points in the updated list and returning these permutations as cycles. Find σ_{∞} by computing $\sigma_{1}{ }^{-1} \sigma_{0}{ }^{-1}$. This yields the monodromy triple.
6. Compute the monodromy group of the Belyĭ pair by defining G as the symmetric group of order N and the monodromy group H as the subgroup of G generated by σ_{0} and σ_{1}.

Sagemath

4. Compare the list of endpoints computed to the list of N points, and take the point P_{a} from step 1 which is closest to that endpoint. This will help us avoid small rounding errors.
5. Calculate σ_{0} and σ_{1} by permuting the points in the updated list and returning these permutations as cycles. Find σ_{∞} by computing $\sigma_{1}{ }^{-1} \sigma_{0}{ }^{-1}$. This yields the monodromy triple.
6. Compute the monodromy group of the Belyĭ pair by defining G as the symmetric group of order N and the monodromy group H as the subgroup of G generated by σ_{0} and σ_{1}.
7. Determine isomorphism. Define M as the monodromy group for the Belyı̆ pair (f, b) and C as the monodromy group for the Belyı̆ pair $\left(f, b^{n}\right)$. Check if $|C|=m^{n} n$ (the order of the wreath product.)

Results

Results

Theorem

Let γ be a toroidal Belyĭ map and $\beta: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ be given by $\beta(z)=z^{n}$ with $n>1$. Suppose $\operatorname{Mon}(\gamma)=\left\langle a_{\gamma}, b_{\gamma}\right\rangle$ is abelian, then
$\operatorname{Mon}(\beta \gamma) \cong \operatorname{Mon}(\gamma) \prec \operatorname{Mon}(\beta) \Longleftrightarrow \operatorname{Mon}(\gamma)=\left\langle b_{\gamma}\right\rangle$.

Results

Theorem

Let γ be a toroidal Bely̌̌ map and $\beta: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ be given by $\beta(z)=z^{n}$ with $n>1$. Suppose $\operatorname{Mon}(\gamma)=\left\langle a_{\gamma}, b_{\gamma}\right\rangle$ is abelian, then $\operatorname{Mon}(\beta \gamma) \cong \operatorname{Mon}(\gamma)\left\langle\operatorname{Mon}(\beta) \Longleftrightarrow \operatorname{Mon}(\gamma)=\left\langle b_{\gamma}\right\rangle\right.$.

Note

Recall, Theorem 4.18 tells us

$$
\operatorname{Mon}(\beta \gamma) \cong \operatorname{Mon}(\gamma)\left\langle\operatorname{Mon}(\beta) \Longleftrightarrow \rho_{\gamma^{*}}(A) \cong(\operatorname{Mon}(\gamma))^{n}\right.
$$

The latter statement is the approach we take in proving the above theorem.

Proof (sketch)

Goal: Show that $\rho_{\gamma^{*}}(A) \cong(\operatorname{Mon}(\gamma))^{n}$ if and only if $\operatorname{Mon}(\gamma)=\left\langle b_{\gamma}\right\rangle$. (Recall: $\left.A:=\varphi\left(\operatorname{Ker}\left(\rho_{\beta}\right)\right)\right)$

Proof (sketch)

Goal: Show that $\rho_{\gamma^{*}}(A) \cong(\operatorname{Mon}(\gamma))^{n}$ if and only if $\operatorname{Mon}(\gamma)=\left\langle b_{\gamma}\right\rangle$. (Recall: $\left.A:=\varphi\left(\operatorname{Ker}\left(\rho_{\beta}\right)\right)\right)$

Outline

1. Calculate τ_{0}, τ_{1} and f_{0}, f_{1} for β.
2. Determine generators of $\operatorname{Ker}\left(\rho_{\beta}\right)$.
3. Find generators of $A:=\varphi\left(\operatorname{Ker}\left(\rho_{\beta}\right)\right)$ and subsequently, $\rho_{\gamma^{*}}(A)$.
4. Show $\operatorname{Mon}(\gamma)=\left\langle b_{\gamma}\right\rangle$ implies $\rho_{\gamma^{*}}(A) \cong(\operatorname{Mon}(\gamma))^{n}$.
5. Show $\rho_{\gamma^{*}}(A) \cong(\operatorname{Mon}(\gamma))^{n}$ implies $\operatorname{Mon}(\gamma)=\left\langle b_{\gamma}\right\rangle$.

Step 1

1. Calculate τ_{0}, τ_{1} and f_{0}, f_{1} for β.

$$
\begin{aligned}
\tau_{0} & =(1,2, \ldots, n) \\
\tau_{1} & =i d \\
f_{0} & =(1, \ldots, a, \ldots, 1) \\
f_{1} & =(b, 1, \ldots, 1)
\end{aligned}
$$

Step 2

2. Determine generators of $\operatorname{Ker}\left(\rho_{\beta}\right)$

- Recall that $\beta: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ has branch points $0,1, \infty$ so that $\rho_{\beta}: \pi_{1}\left(\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}\right) \rightarrow \operatorname{Mon}(\beta)$.
- The fundamental group $\pi_{1}\left(\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}\right) \cong F_{2}$ where $F_{2}=\langle a, b\rangle$.
- $\rho_{\beta}(a)=\tau_{0}=(1,2, \ldots, n)$ and $\rho_{\beta}(b)=\tau_{1}=i d$.
- $\operatorname{Ker}\left(\rho_{\beta}\right)=\left\langle a^{n}, b, a^{i} b a^{-i}\right\rangle$ for $i \in\left\{ \pm 1, \ldots, \pm\left\lfloor\frac{n}{2}\right\rfloor\right\}$

Step 2

2. Determine generators of $\operatorname{Ker}\left(\rho_{\beta}\right)$

- Recall that $\beta: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ has branch points $0,1, \infty$ so that $\rho_{\beta}: \pi_{1}\left(\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}\right) \rightarrow \operatorname{Mon}(\beta)$.
- The fundamental group $\pi_{1}\left(\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}\right) \cong F_{2}$ where $F_{2}=\langle a, b\rangle$.
- $\rho_{\beta}(a)=\tau_{0}=(1,2, \ldots, n)$ and $\rho_{\beta}(b)=\tau_{1}=i d$.
- $\operatorname{Ker}\left(\rho_{\beta}\right)=\left\langle a^{n}, b, a^{i} b a^{-i}\right\rangle$ for $i \in\left\{ \pm 1, \ldots, \pm\left\lfloor\frac{n}{2}\right\rfloor\right\}$

Sanity Check:

$$
F_{2} /\left\langle a^{n}, b, a^{i} b a^{-i}\right\rangle=\left\{\overline{1}, \bar{a}, \ldots, \overline{a^{n-1}}\right\} \cong C_{n}
$$

Step 3

3. Find generators of $A:=\varphi\left(\operatorname{Ker}\left(\rho_{\beta}\right)\right)$ and subsequently, $\rho_{\gamma^{*}}(A)$

Recall: $\varphi(a)=\left[f_{0}, \tau_{0}\right]$ and $\varphi(b)=\left[f_{1}, \tau_{1}\right]$

- $\varphi(a)=\left[(1, \ldots, a, \ldots, 1) ; \tau_{0}\right]$
- $\varphi(b)=[(b, 1, \ldots, 1) ; i d]$

Step 3

3. Find generators of $A:=\varphi\left(\operatorname{Ker}\left(\rho_{\beta}\right)\right)$ and subsequently, $\rho_{\gamma^{*}}(A)$

Recall: $\varphi(a)=\left[f_{0}, \tau_{0}\right]$ and $\varphi(b)=\left[f_{1}, \tau_{1}\right]$

- $\varphi(a)=\left[(1, \ldots, a, \ldots, 1) ; \tau_{0}\right]$
- $\varphi(b)=[(b, 1, \ldots, 1) ; i d]$

Example Calculation:

$$
\begin{aligned}
\varphi(a)^{2} & =\left[(1, \ldots, a, \ldots, 1) ; \tau_{0}\right] \cdot\left[(1, \ldots, a, \ldots, 1) ; \tau_{0}\right] \\
& =\left[(1, \ldots, a, \ldots, 1) \cdot \tau_{0}(1, \ldots, a, \ldots, 1) ; \tau_{0}^{2}\right] \\
& =\left[(1, \ldots, a, \ldots, 1) \cdot(1, \ldots, 1, a, \ldots, 1) ; \tau_{0}^{2}\right] \\
& =\left[(1, \ldots, a, a, \ldots, 1) ; \tau_{0}^{2}\right]
\end{aligned}
$$

Step 3 (cont.)

Generators of $A:=\varphi\left(\operatorname{Ker}\left(\rho_{\beta}\right)\right)$

- $\varphi\left(a^{n}\right)=[(a, \ldots, a) ; i d]$
- $\varphi(b)=[(b, 1, \ldots, 1) ; i d]$
- $\varphi\left(a^{i} b a^{-i}\right)=[(1, \ldots, b, \ldots, 1) ; i d]$
$\varphi\left(\operatorname{Ker}\left(\rho_{\beta}\right)\right)=\langle[(a, \ldots, a) ; i d],[(b, 1, \ldots, 1) ; i d], \ldots,[(1, \ldots, 1, b) ; i d]\rangle$

$$
\rho_{\gamma}=\rho_{\gamma^{*}} \rtimes i d
$$

$$
\rho_{\gamma^{*}}(A)=\left\langle\left(a_{\gamma}, \ldots, a_{\gamma}\right),\left(b_{\gamma}, 1, \ldots, 1\right), \ldots,\left(1, \ldots, 1, b_{\gamma}\right)\right\rangle
$$

Step 4

4. Show $\operatorname{Mon}(\gamma)=\left\langle b_{\gamma}\right\rangle$ implies $\rho_{\gamma^{*}}(A) \cong(\operatorname{Mon}(\gamma))^{n}$

- $\rho_{\gamma^{*}}(A)=\left\langle\left(a_{\gamma}, \ldots, a_{\gamma}\right),\left(b_{\gamma}, \ldots, 1\right), \ldots,\left(1, \ldots, b_{\gamma}\right)\right\rangle \leq(\operatorname{Mon}(\gamma))^{n}$.
- $\left\langle\left(b_{\gamma}, 1, \ldots, 1\right), \ldots,\left(1, \ldots, 1, b_{\gamma}\right)\right\rangle \cong\left(\left\langle b_{\gamma}\right\rangle\right)^{n} \leq \rho_{\gamma^{*}}(A)$
- Since $\operatorname{Mon}(\gamma)=\left\langle b_{\gamma}\right\rangle,\left(\left\langle b_{\gamma}\right\rangle\right)^{n}=(\operatorname{Mon}(\gamma))^{n}$
- $(\operatorname{Mon}(\gamma))^{n} \leq \rho_{\gamma^{*}}(A) \leq(\operatorname{Mon}(\gamma))^{n}$ implies $\rho_{\gamma^{*}}(A) \cong(\operatorname{Mon}(\gamma))^{n}$.

Step 5

5. Show $\rho_{\gamma^{*}}(A) \cong(\operatorname{Mon}(\gamma))^{n}$ implies $\operatorname{Mon}(\gamma)=\left\langle b_{\gamma}\right\rangle$

- $\left(a_{\gamma}, 1, \ldots, 1\right) \in \rho_{\gamma^{*}}(A)$
- There exists $\ell, k_{1}, k_{2} \in \mathbb{Z}$ such that

$$
a_{\gamma}=b_{\gamma}^{k_{1}} a_{\gamma}^{\ell} \text { and } 1=b_{\gamma}^{k_{2}} a_{\gamma}^{\ell}
$$

- Then $a_{\gamma}^{\ell}=b_{\gamma}^{-k_{2}}$ so that $a_{\gamma}=b_{\gamma}^{k_{1}-k_{2}}$
- $a_{\gamma} \in\left\langle b_{\gamma}\right\rangle$ implies $\operatorname{Mon}(\gamma)=\left\langle b_{\gamma}\right\rangle$

Other dynamical Bely̌̌ maps

We can prove analogous results for other dynamical Belyĭ maps:

1	β	Extending Pattern	Generators
1	$-\frac{27}{4}\left(t^{3}-t^{2}\right)$	$\begin{array}{ll} \tau_{0}=(12) & f_{0}=[a, 1, b] \\ \tau_{1}=(23) & f_{1}=[1,1,1] \end{array}$	$\begin{gathered} {\left[a^{-2}, b^{-1}, b^{-1}\right],[1,1,1],\left[b^{-1}, a^{-2}, b^{-1}\right],} \\ {\left[a b^{-1} a^{-1}, b^{-1}, b a^{-2} b^{-1}\right],} \\ {\left[a^{-1}, a b^{-1}, b a^{-1} b^{-1}\right]} \end{gathered}$
2	$-2 t^{3}+3 t^{2}$	$\begin{array}{ll} \tau_{0}=(12) & f_{0}=[a, 1,1] \\ \tau_{1}=(23) & f_{1}=[1, b, 1] \end{array}$	$\begin{gathered} {\left[a^{-1}, a^{-1}, 1\right],\left[1, b^{-1}, b^{-1}\right],\left[a b^{-1} a^{-1}, 1, b^{-1}\right]} \\ {\left[a^{-1}, 1, a^{-1}\right],\left[1, a^{-1}, a^{-1}\right],} \\ {\left[1, b a^{-1}, 1\right],\left[a b^{-1} a^{-1}, a^{-1}, 1\right]} \end{gathered}$
3	$\frac{t^{3}+3 t^{2}}{4}$	$\begin{array}{ll}\tau_{0}=(23) & f_{0}=[1, a, 1] \\ \tau_{1}=(12) & f_{1}=[1,1, b]\end{array}$	$\begin{aligned} & {\left[1, a^{-1}, a^{-1}\right],\left[1,1, b^{-2}\right],\left[a, a b^{-2} a^{-1}, 1\right],} \\ & {\left[a^{-1}, 1, b a^{-1} b^{-1}\right],\left[a^{-1}, a b a^{-1} b^{-1} a^{-1}, 1\right],} \\ & {\left[a b a^{-1}, b^{-1} a^{-1}, b\right],\left[a b^{-1} a^{-1}, b^{-1} a^{-1}, b\right]} \end{aligned}$
4	$\frac{27 t^{2}(t-1)}{(3 t-1)^{3}}$	$\begin{array}{ll} \tau_{0}=(23) & f_{0}=[b, a, 1] \\ \tau_{1}=(12) & f_{1}=\left[b^{-1} a^{-1}, 1,1\right] \end{array}$	$\begin{gathered} {\left[b^{-2}, a^{-1}, a^{-1}\right],[a b, a b, 1],[b a, 1, a b],} \\ {\left[b^{-1} a^{-1} b, b^{-2}, a^{-1}\right],\left[a^{-1}, a^{-1}, b^{-2}\right],} \\ {\left[b^{-1}, a^{-2}, b^{-1}\right],\left[b^{-1}, b a^{-1}, a\right]} \end{gathered}$
5	$\frac{t^{2}(t-1)}{\left(t-\frac{4}{3}\right)^{3}}$	$\begin{array}{ll} \tau_{0}=(12) & f_{0}=[a, 1, b] \\ \tau_{1}=(23) & f_{1}=\left[b^{-1} a^{-1}, 1,1\right] \end{array}$	$\begin{gathered} {\left[a^{-1}, a^{-1}, b^{-2}\right],\left[b^{-1} a^{-1} b, b^{-2}, a^{-1}\right]} \\ {[a b a b, 1,1],[1, a b a b, 1]} \\ {\left[a b^{-2} a^{-1}, b^{-1} a^{-1} b, b a^{-1} b^{-1}\right]} \\ {\left[b^{-2} a^{-1}, b^{2}, b^{-1} a^{-1} b^{-1}\right],\left[b^{-2} a^{-1}, b^{2}, a\right]} \end{gathered}$

Other dynamical Belyǐ maps

Sufficient conditions for $\operatorname{Mon}\left(\beta_{i} \gamma\right) \cong \operatorname{Mon}(\gamma)$ $\operatorname{Mon}\left(\beta_{i}\right)$

$\beta_{1}: \operatorname{Mon}(\gamma)=\left\langle a_{\gamma}^{2}\right\rangle$ or $a_{\gamma}=1$ (so that $\left.\operatorname{Mon}(\gamma)=\left\langle b_{\gamma}\right\rangle\right)$
$\beta_{2}: \operatorname{Mon}(\gamma)=\left\langle a_{\gamma}^{2}\right\rangle$ or $\operatorname{Mon}(\gamma)=\left\langle b_{\gamma}^{2}\right\rangle$
$\beta_{3}: \operatorname{Mon}(\gamma)=\left\langle a_{\gamma}^{2}\right\rangle$ or $\operatorname{Mon}(\gamma)=\left\langle b_{\gamma}^{2}\right\rangle$
$\beta_{4}: \operatorname{Mon}(\gamma)=\left\langle c_{\gamma}^{2}\right\rangle$
$\beta_{5}: \operatorname{Mon}(\gamma)=\left\langle c_{\gamma}^{2}\right\rangle$

Further Research

- Investigating case where $\operatorname{Mon}(\gamma)$ is non-abelian
- Considering other compositions like $E(\mathbb{C}) \rightarrow E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ or involving surfaces of genus >1

Works Cited

- J.A. Bond. On the Computation and Composition of Belyı̆ Maps and Dessins D'enfants. 2018. http://gateway.proquest.com.ezproxy.library.wisc. edu/openurl?url_ver=Z39.88-2004\&rft_val_fmt=info:ofi/fmt:kev: mtx:dissertation\&res_dat=xri:pqm\&rft_dat=xri:pqdiss:10809531.
- M. Mabe, R.A. Moy, J. Schmurr, and J. Varlack. Monodromy Groups of Dessins d'Enfant on Rational Triangular Billiard Surfaces, 2021. https://arxiv.org/abs/2106.15588v1.
- M.M. Wood. Belyi-extending maps and the Galois action on dessins d'enfants. Publications of the Research Institute for Mathematical Sciences, 42(3):721-738, 2006. http://projecteuclid.org.ezproxy.library. wisc.edu/euclid.prims/1166642157.
- A. Zeytin. Belyı̆ Lattès Maps, 2016. https://arxiv.org/abs/1011.5644.

Acknowledgements

- Dr. Rachel Davis, Dr. Alex Barrios, and Dr. Edray Goins
- Our fellow PRiME participants
- National Security Agency (H98230-21-1-0015)
- PRiME 2021 and those who made it possible.

Thank you for watching! Questions?

