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Elliptic Curves

Elliptic Curve
An elliptic curve E(C) is the set of all points (x, y) satisfying a
nonsingular equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for coefficients a1, a2, a3, a4, a6 ∈ C.

Note
Every elliptic curve E(C) is a torus T 2(R).

Anderson, Hiveley, Nguyen, & Tedeschi Monodromy of Compositions December 19, 2022 4 / 47



Background Our Project Tools Results Acknowledgements

Elliptic Curves

Elliptic Curve
An elliptic curve E(C) is the set of all points (x, y) satisfying a
nonsingular equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for coefficients a1, a2, a3, a4, a6 ∈ C.

Note
Every elliptic curve E(C) is a torus T 2(R).

Anderson, Hiveley, Nguyen, & Tedeschi Monodromy of Compositions December 19, 2022 4 / 47



Background Our Project Tools Results Acknowledgements

Toroidal Bely̆ı Maps

Bely̆ı Map
A Bely̆ı map γ : X → P1(C) is a mapping of a Riemann surface to a
Riemann sphere with three branch points {0, 1,∞}.

Bely̆ı Pair
A Bely̆ı pair (X, γ) is composed of the Riemann surface and its
corresponding Bely̆ı map.

Toroidal Bely̆ı Map
A Toroidal Bely̆ı map is a mapping γ : E(C)→ P1(C) from an elliptic
curve E to a Riemann sphere. A Toroidal Bely̆ı pair is (E, γ).
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Toroidal Bely̆ı Maps

X

γ

Y

β

Z

β ◦ γ
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Dessin d’Enfants

Dessin d’Enfants
Given a Bely̆ı pair (X, γ) we define the sets B = γ−1({0}) and
W = γ−1({1}). We refer to B as the set of black vertices and W as the
set of white vertices. The Dessin d’Enfant is the bipartite graph
embedded in X with vertices B, W and edges γ−1([0, 1]).

Note
The degree of a Bely̆ı map γ is equal to the number of edges in its dessin
d’enfant.
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Dessin d’Enfants

∆ is the dessin corresponding to the permutation pair

[(1, 2, 3, 4)(5, 6, 7)(8, 9), (1, 8, 4, 7)(2, 3, 10)(5, 6)]

Ω is the dessin corresponding to the permutation pair

[(1, 2, 3, 4)(5, 6, 7)(8, 9), (1, 3, 8, 9)(2, 10)(4, 5, 6)]
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Degree Sequence

Degree Sequence
Denote the preimages B = γ−1(0), W = γ−1(1), and F = γ−1(∞) as
marked points on the compact connected Riemann surface X. We will
define the Degree Sequence of γ as the multiset of multisets

D =
{{
eP
∣∣P ∈ B}, {eP ∣∣P ∈W}

,
{
eP
∣∣P ∈ F}}.

Define N = deg(γ) as the degree of the Bely̆ı map.

Example
The degree sequence

D =
{
{4, 3, 2, 1}, {4, 3, 2, 1}, {10}

}
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Monodromy Groups

Monodromy Group
A group of the form G = 〈σ0, σ1, σ∞〉 that satisfies these properties is said
to be a monodromy group.

Each of the permutations in D is a product of disjoint cycles with
corresponding cycle types.

G is a transitive subgroup of SN

σ0 ◦ σ1 ◦ σ∞ = 1
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Wreath Product
Semidirect Product
Given any two groups N,H and a group homomorphism ϕ : H → Aut(N)
we can construct the semidirect product N oH as follows:

The underlying set is the product N ×H.

The binary operation ? is defined as
(n1, h1) ? (n2, h2) = (n1ϕ(h1)(n2), h1h2)

Wreath Product
Let G be a group and H ≤ Sn for some non-negative integer n. Then we
can form the wreath product as

G oH = Gn oH

where H acts on Gn by permuting the n copies of G.

Anderson, Hiveley, Nguyen, & Tedeschi Monodromy of Compositions December 19, 2022 11 / 47



Background Our Project Tools Results Acknowledgements

Wreath Product
Semidirect Product
Given any two groups N,H and a group homomorphism ϕ : H → Aut(N)
we can construct the semidirect product N oH as follows:

The underlying set is the product N ×H.

The binary operation ? is defined as
(n1, h1) ? (n2, h2) = (n1ϕ(h1)(n2), h1h2)

Wreath Product
Let G be a group and H ≤ Sn for some non-negative integer n. Then we
can form the wreath product as

G oH = Gn oH

where H acts on Gn by permuting the n copies of G.
Anderson, Hiveley, Nguyen, & Tedeschi Monodromy of Compositions December 19, 2022 11 / 47



Background Our Project Tools Results Acknowledgements

Our Project
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Goal

The monodromy group Mon(β) contains information about the
symmetries of a Bely̆ı map β. For any Toroidal Bely̆ı map γ,

There is a surjective group homomorphism Mon(β ◦ γ) � Mon(β).

The monodromy group Mon(β ◦ γ) is contained in the wreath
product Mon(γ) o Mon(β).

Goal:
In this project, we study how the three groups Mon(β) and Mon(β ◦ γ)
and Mon(γ) o Mon(β) compare as we vary over Dynamical Bely̆ı maps β
and now Toroidal Bely̆ı maps γ.
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Toroidal Bely̆ı Map

X

γ

Y

β

Z

β ◦ γ

We will be working with the composition β ◦ γ : E(C)→ P1(C)→ P1(C),
which is a Toroidal Bely̆ı Map.
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Motivating Question

When is Mon(β ◦ γ) equal to Mon(γ) o Mon(β)?
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Tools
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Jacob Bond’s Theorems
Corollary (pg. 71)
The monodromy group Mon(βγ) of the composition of a dynamical
Bely̆ı map β and a Bely̆ı map γ is isomorphic to a subgroup of the wreath
product Mon(γ) oEβ Mon(β). Moreover, this isomorphism is given by

Mon(βγ) → ϕγ(πZ1 ) ≤ Mon(γ) oEβ Mon(β)
ρβγ(λ) 7→ (ργ?(fλ), ρβ(λ)) .

Note
The wreath product is denoted oEβ because Mon(β) acts on the set of
edges Eβ of the dessin for β.

ρβ(λ) denotes the monodromy representation of λ under β.
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Jacob Bond’s Theorems

Theorem 4.18 (pg. 76)
Let β be a dynamical Bely̆ı map with constellation (τ0, τ1), and extending
pattern (f0, f1). Let

ϕ : g0 7→ (f0, τ0)
g1 7→ (f1, τ1)

and A := ϕ(Kerρβ). Then for any Bely̆ı map γ,

Mon(βγ) ∼= ργ?(A)oMon(β)

Note
We can view Kerρβ ≤ F2. If F2 = 〈g0, g1〉 then we can construct the
above homomorphism ϕ by defining ϕ(g0) and ϕ(g1).
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Jacob Bond’s Theorems

Rules for the extending pattern
1. If p ⊆ R1/2, then p	 'p 1.
2. If either p(0), p(1) ∈ H+ or p(0), p(1) ∈ H− and either p ⊆ R−1/2 or
p ⊆ R3/2, then p ' p1
3. If p(0) ∈ H+, p(1) ∈ H−, and p ⊆ R−1/2, then p	 'p a.
4. If p(0) ∈ H−, p(1) ∈ H+, and p ⊆ R3/2, then p	 'p b.
5. If p(0) ∈ H−, p(1) ∈ H+, and p ⊆ R−1/2, then p	 'p a−1.
6. If p(0) ∈ H+, p(1) ∈ H−, and p ⊆ R3/2, then p	 'p b−1.

Note
R−1/2 := P1(C)\[0,∞]
R1/2 := P1(C)\([−∞, 0] ∪ [1,∞])
R3/2 := P1(C)\[−∞, 1]
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Jacob Bond’s Theorems
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Melanie Wood’s Paper

X

γ

Y

β

Z

β ◦ γ

Melanie Wood uses the composition β ◦ γ : P1(C)→ P1(C)→ P1(C),
mapping a sphere to a sphere to a sphere.
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Wood’s Paper Cont.

Example 3.8 pg 733
ξ(t) = 27t2/(4(t2 − t+ 1)3).
The extending pattern of ξ is shown in the figure below.

1 2

3

45

6

0 1

∞
In the notation from Jacob
Bond’s thesis, for γ = ∆,Ω and
β = ξ, then we have

τ0 = (1, 6)(2, 3)(4, 5)

τ1 = (1, 2)(3, 4)(5, 6)
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Wood’s Paper Cont.

1 2

3

45

6

0 1

∞

0 1

∞

H+

R1/2

R3/2R−1/2

a

a−1

b

b−1

Extending Pattern

τ0 = (1, 6)(2, 3)(4, 5) f0 = [1, b, 1, b−1a−1, 1, a]
τ1 = (1, 2)(3, 4)(5, 6) f1 = [1, 1, 1, 1, 1, 1]
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Wood’s Paper Cont.

Mon(ξ) = H = 〈(1, 2)(3, 4)(5, 6), (1, 6)(2, 3)(4, 5)〉.
Mon(∆) = Mon(Ω) = A10.

Let n = |A10| = 10!
2 .

Then, A10 oH, has order 6n6.

|Mon(ξ ◦∆)| = 6n2,

so Mon(ξ ◦∆) � A10 oH, but

|Mon(ξ ◦ Ω)| = 6n6,

so Mon(ξ ◦ Ω) = A10 oH.
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Bely̆ı Lattès Maps by Ayberk Zeytin

X

γ

Y

β

Z

β ◦ γ

Ayberk Zeytin uses the composition β ◦ γ : E(C)→ E(C)→ P1(C),
mapping a torus to a torus to a sphere.
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Bely̆ı Lattès Maps by Ayberk Zeytin

Let E be an elliptic curve given by E : y2 = x3 + 1. Consider the toroidal
Bely̆ı map

φ : E → P1

given by
φ : P = (x, y) 7→ z = 1− y

2 .

Lattès Maps
For any positive integer N , the multiplication by N map on E, [N ] yields
a dynamical Bely̆ı map BN : P1 → P1 given by BN (φ(P )) = φ([N ]).
Then, BN has degree N2 and the BN are called Lattès maps.
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Bely̆ı Lattès Maps by Ayberk Zeytin

n Bn Mon(Bn) Mon(Bn ◦ φ)
2 (z−1)(z+1)3

8(z−1/2)3 A4 A4

3 (z3+3z2−6z+1)3

27z(z−1)(z2−z+1)3 He3 (Heisenberg of order 27) He3

4 z(z5+8z4−32z3+28z2−10z+4)3

(4z5−10z4+28z3−32z2+8z+1)3 (C4 × C4)o C3 (C4 × C4)o C3
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Bely̆ı Lattès Maps by Ayberk Zeytin

Case: n=2

(Image from Mathematica code by
Elzie, Nishida, and Thomas.)

τ0 = (1, 3, 4) τ1 = (2, 4, 3)

f0 = [1, b, a, a−1] f1 = [a, b−1, 1, b]

Dessin Explorer from REUF and
Professor Goins
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Bely̆ı Lattès Maps by Ayberk Zeytin

Case: n=3

(Image from Mathematica code by
Elzie, Nishida, and Thomas.)

τ0 = (1, 7, 2)(3, 9, 4)(5, 8, 6)

τ1 = (1, 2, 8)(3, 4, 7)(5, 6, 9)

f0 = [a−1, a, 1, 1, b, b−1, 1, 1, 1]

f1 = [b, 1, a−1, 1, 1, 1, a, b−1, 1]

Dessin Explorer from REUF and
Professor Goins
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Bely̆ı Lattès Maps by Ayberk Zeytin
Case: n=3

Pappus graph: 18 vertices, 27 edges, 9 hexagons

Wikipedia: Pappus graph
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Sagemath
F A special thanks to Dr. Edray Goins for providing a base code for us to
adapt for our own research!

Function of Code
0. Inputs a Bely̆ı pair (f, β) where β is written b in our code.

1. Solve for a list of N points (x, y) such that f = 0 and b = z0 = 1
2 .

2. Solve the first order IVP:[
dx
dt
dy
dt

]
= 2π

√
−1 β(x, y)− e

(∂β/∂x)(∂f/∂y)− (∂β/∂y)(∂f/∂x)

[
+ ∂f

∂y

−∂f
∂x

]
,

[
x(0)
y(0)

]
= Pa

We use Euler’s method to do this in Sage.

3. Form a list of endpoints by carrying out step 2 for a = 1, 2, . . . , N on
the interval 0 ≤ t ≤ 1 and selecting the endpoint of each path. Do
this twice to create 2 lists, one for e = 0 and one for e = 1.
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Sagemath

4. Compare the list of endpoints computed to the list of N points, and
take the point Pa from step 1 which is closest to that endpoint. This
will help us avoid small rounding errors.

5. Calculate σ0 and σ1 by permuting the points in the updated list and
returning these permutations as cycles. Find σ∞ by computing
σ1
−1σ0

−1. This yields the monodromy triple.

6. Compute the monodromy group of the Bely̆ı pair by defining G as
the symmetric group of order N and the monodromy group H as the
subgroup of G generated by σ0 and σ1.

7. Determine isomorphism. Define M as the monodromy group for the
Bely̆ı pair (f, b) and C as the monodromy group for the Bely̆ı pair
(f, bn). Check if |C| = mnn (the order of the wreath product.)
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Results
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Results

Theorem
Let γ be a toroidal Bely̆ı map and β : P1(C)→ P1(C) be given by
β(z) = zn with n > 1. Suppose Mon(γ) = 〈aγ , bγ〉 is abelian, then

Mon(βγ) ∼= Mon(γ) oMon(β) ⇐⇒ Mon(γ) = 〈bγ〉.

Note
Recall, Theorem 4.18 tells us

Mon(βγ) ∼= Mon(γ) oMon(β) ⇐⇒ ργ∗(A) ∼= (Mon(γ))n.

The latter statement is the approach we take in proving the above
theorem.
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Proof (sketch)

Goal: Show that ργ∗(A) ∼= (Mon(γ))n if and only if Mon(γ) = 〈bγ〉.
(Recall: A := ϕ(Ker(ρβ)))

Outline
1. Calculate τ0, τ1 and f0, f1 for β.

2. Determine generators of Ker(ρβ).

3. Find generators of A := ϕ(Ker(ρβ)) and subsequently, ργ∗(A).

4. Show Mon(γ) = 〈bγ〉 implies ργ∗(A) ∼= (Mon(γ))n.

5. Show ργ∗(A) ∼= (Mon(γ))n implies Mon(γ) = 〈bγ〉.
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Step 1
1. Calculate τ0, τ1 and f0, f1 for β.

τ0 = (1, 2, . . . , n)
τ1 = id

f0 = (1, . . . , a, . . . , 1)
f1 = (b, 1, . . . , 1)
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Step 2

2. Determine generators of Ker(ρβ)

Recall that β : P1(C)→ P1(C) has branch points 0, 1,∞ so that
ρβ : π1(P1(C) \ {0, 1,∞})→ Mon(β).

The fundamental group π1(P1(C) \ {0, 1,∞}) ∼= F2 where
F2 = 〈a, b〉.

ρβ(a) = τ0 = (1, 2, . . . , n) and ρβ(b) = τ1 = id.

Ker(ρβ) = 〈an, b, aiba−i〉 for i ∈ {±1, . . . ,±bn2 c}

Sanity Check:

F2/〈an, b, aiba−i〉 = {1, a, . . . , an−1} ∼= Cn
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Step 3

3. Find generators of A := ϕ(Ker(ρβ)) and subsequently, ργ∗(A)
Recall: ϕ(a) = [f0, τ0] and ϕ(b) = [f1, τ1]

ϕ(a) = [(1, . . . , a, . . . , 1); τ0]

ϕ(b) = [(b, 1, . . . , 1); id]

Example Calculation:

ϕ(a)2 = [(1, . . . , a, . . . , 1); τ0] · [(1, . . . , a, . . . , 1); τ0]
= [(1, . . . , a, . . . , 1) · τ0(1, . . . , a, . . . , 1); τ2

0 ]
= [(1, . . . , a, . . . , 1) · (1, . . . , 1, a, . . . , 1); τ2

0 ]
= [(1, . . . , a, a, . . . , 1); τ2

0 ]
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Step 3 (cont.)

Generators of A := ϕ(Ker(ρβ))

ϕ(an) = [(a, . . . , a); id]

ϕ(b) = [(b, 1, . . . , 1); id]

ϕ(aiba−i) = [(1, . . . , b, . . . , 1); id]

ϕ(Ker(ρβ)) = 〈[(a, . . . , a); id], [(b, 1, . . . , 1); id], . . . , [(1, . . . , 1, b); id]〉

ργ = ργ∗ o id

ργ∗(A) = 〈(aγ , . . . , aγ), (bγ , 1, . . . , 1), . . . , (1, . . . , 1, bγ)〉
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Step 4

4. Show Mon(γ) = 〈bγ〉 implies ργ∗(A) ∼= (Mon(γ))n

ργ∗(A) = 〈(aγ , . . . , aγ), (bγ , . . . , 1), . . . , (1, . . . , bγ)〉 ≤ (Mon(γ))n.

〈(bγ , 1, . . . , 1), . . . , (1, . . . , 1, bγ)〉 ∼= (〈bγ〉)n ≤ ργ∗(A)

Since Mon(γ) = 〈bγ〉, (〈bγ〉)n = (Mon(γ))n

(Mon(γ))n ≤ ργ∗(A) ≤ (Mon(γ))n implies ργ∗(A) ∼= (Mon(γ))n.
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Step 5

5. Show ργ∗(A) ∼= (Mon(γ))n implies Mon(γ) = 〈bγ〉

(aγ , 1, . . . , 1) ∈ ργ∗(A)

There exists `, k1, k2 ∈ Z such that

aγ = bk1
γ a

`
γ and 1 = bk2

γ a
`
γ

Then a`γ = b−k2
γ so that aγ = bk1−k2

γ

aγ ∈ 〈bγ〉 implies Mon(γ) = 〈bγ〉
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Other dynamical Bely̆ı maps
We can prove analogous results for other dynamical Bely̆ı maps:
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Other dynamical Bely̆ı maps

Sufficient conditions for Mon(βiγ) ∼= Mon(γ) oMon(βi)

β1: Mon(γ) = 〈a2
γ〉 or aγ = 1 (so that Mon(γ) = 〈bγ〉)

β2: Mon(γ) = 〈a2
γ〉 or Mon(γ) = 〈b2

γ〉

β3: Mon(γ) = 〈a2
γ〉 or Mon(γ) = 〈b2

γ〉

β4: Mon(γ) = 〈c2
γ〉

β5: Mon(γ) = 〈c2
γ〉
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Further Research

Investigating case where Mon(γ) is non-abelian

Considering other compositions like E(C)→ E(C)→ P1(C) or
involving surfaces of genus > 1
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Thank you for watching!
Questions?
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